74 research outputs found

    Coupling the Glacial Systems Model (GSM) to LOVECLIM: description, sensitivities, and validation

    Get PDF
    We have coupled an Earth Systems Model of Intermediate Complexity (LOVECLIM) to the Glacial Systems Model (GSM). This coupling includes a number of interactions between ice sheets and climate that are often ignored: dynamic meltwater runoff routing, novel down-scaling for precipitation that corrects orographic forcing to the higher resolution ice sheet grid ("advective precipitation"), dynamic vertical temperature gradient, and ocean temperatures for sub-shelf melt. The sensitivity of the coupled model with respect to the selected parameterizations and coupling schemes is investigated. Each new coupling feature has a significant impact on ice sheet evolution. An ensemble of runs is used to explore the behaviour of the coupled model over a set of 2000 parameter vectors using Present-Day (PD) initial and boundary conditions. The ensemble of coupled model runs is compared against PD reanalysis data for atmosphere (surface temperature, precipitation, jet-stream and Rossby number of jet), ocean (sea ice, sea surface temperature, and AMOC), and Northern Hemisphere ice sheet thickness and extent. The parameter vectors are then narrowed by rejecting model runs (1700 CE to present) with regional land ice volume changes beyond an acceptance range. The selected sub-set forms the basis for ongoing work to explore the spatial-temporal phase space of the last two glacial cycles

    Last glacial inception trajectories for the Northern Hemisphere from coupled ice and climate modelling

    Get PDF
    We present an ensemble of last glacial inception (LGI) simulations for the Northern Hemisphere that captures a significant fraction of inferred ice volume changes within proxy uncertainties. This ensemble was performed with LCice 1.0, a coupled ice sheet and climate model, varying parameters of both climate and ice sheet components, as well as the coupling between them. Certain characteristics of the spatiotemporal pattern of ice growth and subsequent retreat in both North America (NA) and Eurasia (EA) are sensitive to parameter changes while others are not. We find that the initial inception of ice over NA and EA is best characterized by the nucleation of ice at high-latitude and high-elevation sites. Subsequent spreading and merger along with large-scale conversion of snowfields dominate in different sectors. The latter plays an important role in the merging of eastern and western ice regions in NA. The inception peak ice volume in the ensemble occurs approximately at 111 ka and therefore lags the summer 60∘ N insolation minimum by more than 3 kyr. Ice volumes consistently peak earlier over EA than NA. The inception peak in North America is characterized by a merged Laurentide and Cordilleran ice sheet, with the Davis Strait covered in ice in ∼80 % of simulations. Ice also bridges Greenland and Iceland in all runs by 114 ka and therefore blocks the Denmark Strait. This latter feature would thereby divert the East Greenland Current and Denmark Strait overflow with a potentially significant impact on ocean circulation. The Eurasian ice sheet at its inception peak varies across ensemble runs between a continuous ice sheet and multiple smaller ice caps. In both continents, the colder high latitudes (i.e. Ellesmere and Svalbard) tend to grow ice through the entire simulation (to 102 ka), while lower latitudes lose ice after ∼110 ka. We find temperature decreases over the initial phases of the inception lead to the expansion of NA ice sheet area and that subsequent precipitation increases contribute to its thickening. EA ice sheet area also expands with decreasing temperatures, but sea ice limits any increases in precipitation, leading to an earlier retreat away from the EA maximum ice sheet volume. We also examine the extent to which the capture of both LGI ice growth and retreat constrains the coupled ice–climate model sensitivity to changing atmospheric pCO2. The 55-member sub-ensemble that meets our criteria for “acceptable” ice growth and retreat has an equilibrium climate sensitivity lower bound that is 0.3 ∘C higher than that of the full ensemble. This suggests some potential value of fully coupled ice–climate modelling of the last glacial inception to constrain future climate change

    An ice–climate oscillatory framework for Dansgaard–Oeschger cycles

    Get PDF
    Intermediate glacial states were characterized by large temperature changes in Greenland and the North Atlantic, referred to as Dansgaard–Oeschger (D–O) variability, with some transitions occurring over a few decades. D–O variability included changes in the strength of the Atlantic meridional overturning circulation (AMOC), temperature changes of opposite sign and asynchronous timing in each hemisphere, shifts in the mean position of the Intertropical Convergence Zone and variations in atmospheric CO2. Palaeorecords and numerical studies indicate that the AMOC, with a tight coupling to Nordic Seas sea ice, is central to D–O variability, yet, a complete theory remains elusive. In this Review, we synthesize the climatic expression and processes proposed to explain D–O cyclicity. What emerges is an oscillatory framework of the AMOC–sea-ice system, arising through feedbacks involving the atmosphere, cryosphere and the Earth’s biogeochemical system. Palaeoclimate observations indicate that the AMOC might be more sensitive to perturbations than climate models currently suggest. Tighter constraints on AMOC stability are, thus, needed to project AMOC changes over the coming century as a response to anthropogenic carbon emissions. Progress can be achieved by additional observational constraints and numerical simulations performed with coupled climate–ice-sheet models

    A GNSS velocity field for geophysical applications in Fennoscandia

    Get PDF
    In Fennoscandia, tectonics, Glacial Isostatic Adjustment (GIA), and climatic changes cause ongoing crustal deformation of some millimetres per year, both vertically and horizontally. These displacements of the Earth can be measured to a high degree of precision using a Global Navigation Satellite System (GNSS). Since about three decades, this is the major goal of the Baseline Inferences for Fennoscandian Rebound, Sea-level, and Tectonics (BIFROST) project. We present a new velocity field for an extended BIFROST GNSS network in the ITRF2008 reference frame making use of the GNSS processing package GPS Analysis Software of MIT (GAMIT). Compared to earlier publications, we have almost doubled the number of stations in our analysis and increased the observation time span, thereby avoiding the early years of the network with many instrument changes. We also provide modelled vertical deformation rates from contributing processes, i.e. elastic deformation due to global atmospheric and non-tidal ocean loading, ice mass and hydrological changes as well as GIA. These values for the vertical component can be used for removal of these contributions so that the residual uplift signal can be further analysed, e.g., in the context of local or regional deformation processes or large-scale but low-magnitude geodynamics. The velocity field has an uplift maximum of 10.3 mm/yr in northern Sweden west of the Gulf of Bothnia and subsidence exceeding 1 mm/yr in northern Central Europe. The horizontal velocity field is dominated by plate motion of more than 20.0 mm/yr from south-west to north-east. The elastic uplift signal sums up to 0.7–0.8 mm/yr for most stations in Northern Europe. Hence, the maximum uplift related to the past glaciation is ca. 9.6 mm/yr. The residual uplift signal after removal of the elastic and GIA contribution may point to possible improvements of the GIA model, but may also indicate regional tectonic and erosional processes as well as local deformation effects. We show an example of such residual signal discussing potential areas of interest for further studies

    Warm summers during the Younger Dryas cold reversal

    Get PDF
    The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.Peer reviewe

    Ice sheet decline and rising atmospheric CO2 control AMOC sensitivity to deglacial meltwater discharge

    Get PDF
    Highlights: • Climate model sensitivity experiments are performed using state-of-the-art ice sheet and freshwater reconstructions • Declining Northern Hemisphere ice sheets increase the sensitivity of the AMOC to North Atlantic meltwater discharge • Deglacial rise in atmospheric CO2 concentration decreases the sensitivity of the AMOC to North Atlantic meltwater discharge • Both effects provide a complementary perspective to existing explanations for abrupt AMOC transitions Abstract: The last deglaciation was characterized by a sequence of abrupt climate events thought to be linked to rapid changes in Atlantic meridional overturning circulation (AMOC). The sequence includes a weakening of the AMOC after the Last Glacial Maximum (LGM) during Heinrich Stadial 1 (HS1), which ends with an abrupt AMOC amplification at the transition to the Bølling/Allerød (B/A). This transition occurs despite persistent deglacial meltwater fluxes that counteract vigorous North Atlantic deep-water formation. Using the Earth system model COSMOS with a range of deglacial boundary conditions and reconstructed deglacial meltwater fluxes, we show that deglacial CO2 rise and ice sheet decline modulate the sensitivity of the AMOC to these fluxes. While declining ice sheets increase the sensitivity, increasing atmospheric CO2 levels tend to counteract this effect. Therefore, the occurrence of a weaker HS1 AMOC and an abrupt AMOC increase in the presence of meltwater, might be explained by these effects, as an alternative to or in combination with changes in the magnitude or routing of meltwater discharge

    Impacts of the Last Glacial Cycle on ground surface temperature reconstructions over the last millennium

    Get PDF
    Borehole temperature profiles provide robust estimates of past ground surface temperature changes, in agreement with meteorological data. Nevertheless, past climatic changes such as the Last Glacial Cycle (LGC) generated thermal effects in the subsurface that affect estimates of recent climatic change from geothermal data. We use an ensemble of ice sheet simulations spanning the last 120 ka to assess the impact of the Laurentide Ice Sheet on recent ground surface temperature histories reconstructed from borehole temperature profiles over North America. When the thermal remnants of the LGC are removed, we find larger amounts of subsurface heat storage (2.8 times) and an increased warming of the ground surface over North America by 0.75 K, both relative to uncorrected borehole estimates

    Antarctic ice sheet paleo-constraint database

    Get PDF
    We present a database of observational constraints on past Antarctic Ice Sheet changes during the last glacial cycle intended to consolidate the observations that represent our understanding of past Antarctic changes, for state-space estimation, and paleo-model calibrations. The database is a major expansion of the initial work of Briggs and Tarasov (2013). It includes new data types and multi-tier data quality assessment. The updated constraint database “AntICE2” consists of observations of past grounded and floating ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. In addition to paleo-observations, the present-day ice sheet geometry and surface ice velocities are incorporated to constrain the present-day ice sheet configuration. The method by which the data is curated using explicitly defined criteria is detailed. Moreover, the observational uncertainties are specified. The methodology by which the constraint database can be applied to evaluate a given ice sheet reconstruction is discussed. The implementation of the “AntICE2” database for Antarctic Ice Sheet model calibrations will improve Antarctic Ice Sheet predictions during past warm and cold periods and yield more robust paleo model spin ups for forecasting future ice sheet changes

    Critical dynamics in systems controlled by fractional kinetic equations

    Full text link
    The article is devoted to the dynamics of systems with an anomalous scaling near a critical point. The fractional stochastic equation of a Lanvevin type with the φ3\varphi^3 nonlinearity is considered. By analogy with the model A the field theoretic model is built, and its propagators are calculated. The nonlocality of the new action functional in the coordinate representation is caused by the involving of the fractional spatial derivative. It is proved that the new model is multiplicatively renormalizable, the Gell-Man-Low function in the one-loop approximation is evaluted. The existence of the scaling behavior in the framework of the ε\varepsilon-expansion for a superdiffusion is established.Comment: 25 pages, 1 figur
    • …
    corecore